Magnetic characterization of Fe nanoparticles dispersed in phyllosilicate type silicon oxide

نویسنده

  • V Sagredo
چکیده

We present the magnetic properties of silica-supported metal (Fe,catalyst) nanoparticles synthesized by precipitation of metal nitrate in ammonia-based medium. Our goal is the study of possible metal-support interactions in the nanoporous catalyst. The temperature dependence of the magnetization for all samples display spin-glass like behavior below c.a. 11-12 K, with clear Curie-Weiss dependence in the high-temperature regime. Spin-glass-like behavior was inferred from dynamic AC susceptibility data after analyzing the frequency-dependence of the in-phase component χ'(f) by the expression W = T f /[T f =3.0 x 10-3. We found that the magnetic behavior of the catalyst is drastically affected by the existence of interactions between the metal and the support. 1. Introduction Nanosized particles of ferromagnetic metals as Fe, Ni and Co have attracted great interest because of their physical properties and potential applications as catalyst, magnetic recording media and drug delivery systems, etc [1,2]. Numerous physical and chemical methods have been employed to produce metal nanocrystals, including sputtering, grinding, solution phase metal salt reduction, etc. Significant progress has been made in preparing nearly monodisperse metals. Strong magnetic interactions in Ni, Fe and Co particle systems make it difficult to form stable systems. Uncontrolled agglomeration of the magnetic particles often makes it impossible to employ separation procedures which could narrow the size distribution [3,4,]. A favored approach to assemble and maintain metallic nanoparticles is to form nanocomposites whereby the nanoparticles are embedded in a non-magnetic support that provides mechanical and

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of Fe3O4 Magnetic Nanoparticles Coated with Carboxymethyl Chitosan Grafted Sodium Methacrylate

N-sodium acrylate-O-carboxymethyl chitosan [CMCH-g-PAA(Na)] bound Fe3O4 nanoparticles were developed as a novel magnetic nanoparticles with an ionic structure that can be potentially used in many fields. CMCH-g-PAA (Na) was obtained by grafting of sodium polyacrylate on O-carboxymethyl chitosan, which is an amphiphilic polyelectrolyte with the biocompatibility and biodegra...

متن کامل

One-pot synthesis and characterization of biopolymer – Iron Oxide nanocomposite

The magnetite (Fe3O4) – agar nanocomposite was prepared by co-precipitation of Fe (III) and Fe (II) ions for the first time. The obtained samples were characterized by x-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. FT-IR results confirm the formation of Fe3O4 nanoparticles...

متن کامل

One-pot synthesis and characterization of biopolymer – Iron Oxide nanocomposite

The magnetite (Fe3O4) – agar nanocomposite was prepared by co-precipitation of Fe (III) and Fe (II) ions for the first time. The obtained samples were characterized by x-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. FT-IR results confirm the formation of Fe3O4 nanoparticles...

متن کامل

Spinel-Type Cobalt Oxide (Co3O4) Nanoparticles from the mer- Co(NH3)3(NO2)3 Complex: Preparation, Characterization, and Study of Optical and Magnetic Properties

In this paper, the mer-Co(NH3)3(NO2)3 complex was used as a new precursor for synthesizing spinel-type cobalt oxide nanoparticles (Co3O4NPs).Thermal decomposition of the complex at low temperature (175 °C) resulted in the Co3O4NPs without using expensive and toxic solvents or complicated equipment. XRD, FT-IR, SEM, EDX, and TEM were employed to characterize the product, and its optical and magn...

متن کامل

Mesoporous Carbon Modified with Iron Oxide Based Magnetic Nanomaterials for Removal of Malachite Green Dye From Aqueous Solution

Mesoporous carbon (CMK-3) modified with Fe3O4 nanoparticles has been successfully synthesized and characterized by powder X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscope (SEM) and transmission electron microscopy (TEM).The results depict that the synthesized Fe-CMK-3 preserved the ordered mesoporous structure of CMK-3, and magnetic species were dispersed insi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009